Bayesian Inverse Problem with Denoising Diffusion model priors

Yazid Janati El Idrissi, Eric Moulines CMAP, Ecole polytechnique

joint work with Gabriel Cardoso (CMAP), Sylvain Le Corff (LPSM)

[Introduction](#page-1-0)

We have a dataset $\mathcal{D}_N:=\{X^1,\ldots,X^N\}$, where $X^i\in\mathbb{R}^{d_x}.$

Figure 1: Samples from the ImageNet dataset.

We have a dataset $\mathcal{D}_N:=\{X^1,\ldots,X^N\}$, where $X^i\in\mathbb{R}^{d_x}.$

Figure 1: Samples from the ImageNet dataset.

Modeling assumption

 (X^1,\ldots,X^N) are samples from some $nknown distribution $\pi_{\text{data}}$$

(1) Approximate π_{data} with a parametric model.

Figure 2: data distribution.

Bayesian inverse problems

 $\left(2\right)$ Sample reconstructions from the posterior distribution.

Figure 3: Reconstruction problems. Figure adapted from [Lugmayr et al.](#page-113-0) [\(2022\)](#page-113-0).

 $1)$ Approximate π_{data} with a parametric model $\bm{{\mathsf{p}}}^{\theta}.$

[Ackley et al. \(1985\)](#page-110-0); [Kingma and Welling \(2013\)](#page-113-1); [Goodfellow et al. \(2014\)](#page-112-0); [Rezende](#page-113-2) [and Mohamed \(2015\)](#page-113-2); [Sohl-Dickstein et al. \(2015\)](#page-114-0); [Ho et al. \(2020\)](#page-112-1); [Song et al.](#page-114-1) [\(2021b\)](#page-114-1)

 $1)$ Approximate π_{data} with a parametric model $\bm{{\mathsf{p}}}^{\theta}.$

 \blacksquare Choose a suitable parametric form for p $^\theta.$

[Ackley et al. \(1985\)](#page-110-0); [Kingma and Welling \(2013\)](#page-113-1); [Goodfellow et al. \(2014\)](#page-112-0); [Rezende](#page-113-2) [and Mohamed \(2015\)](#page-113-2); [Sohl-Dickstein et al. \(2015\)](#page-114-0); [Ho et al. \(2020\)](#page-112-1); [Song et al.](#page-114-1) [\(2021b\)](#page-114-1)

 $1)$ Approximate π_{data} with a parametric model $\bm{{\mathsf{p}}}^{\theta}.$

- \blacksquare Choose a suitable parametric form for p $^\theta.$
- $\mathbf 2$ Train $\mathsf p^\theta$ to approximate π using the samples $(X^1,\ldots,X^N)\sim \pi.$

$$
\mathcal{L}(\theta) = \sum_{i=1}^N -\log p^{\theta}(X^i).
$$

 \rightsquigarrow Minimize $\mathcal{L}(\theta)$ → find optimal parameter θ_* .

[Ackley et al. \(1985\)](#page-110-0); [Kingma and Welling \(2013\)](#page-113-1); [Goodfellow et al. \(2014\)](#page-112-0); [Rezende](#page-113-2) [and Mohamed \(2015\)](#page-113-2); [Sohl-Dickstein et al. \(2015\)](#page-114-0); [Ho et al. \(2020\)](#page-112-1); [Song et al.](#page-114-1) [\(2021b\)](#page-114-1)

2) Perform controlled generation using p $^{\theta*}.$

→ Target distribution: weight p $^{\theta_*}$ with a function $x \mapsto g(x)$

2) Perform controlled generation using p $^{\theta*}.$

→ Target distribution: weight p $^{\theta_*}$ with a function $x \mapsto g(x)$

$$
\phi(\mathrm{d}x) = \frac{g(x)\mathsf{p}^{\theta*}(\mathrm{d}x)}{\int g(z)\mathsf{p}^{\theta*}(\mathrm{d}z)},
$$

- \rightsquigarrow Posterior sampling: $q(x) = p(y|x)$.
- \rightarrow Reinforcement learning: q is a reward function.

[Denoising diffusion models](#page-11-0)

Introduction

■ A denoising diffusion probabilistic model (DDPM) makes use of two Markov chains:

1 a forward chain (process) that perturbs data to noise,

2 a reverse chain (process) that converts noise back to data.

- The forward chain is typically hand-designed with the goal to transform the data distribution π_{data} into a (simple) reference distribution π_{ref} (e.g., standard Gaussian)
- The backward chain reverses the forward chain by learning transition kernels.
- New data points are generated by first sampling a random vector from the reference distribution, followed by ancestral sampling through the backward Markov chain.

Forward process

- **■** Given a data distribution $x_0 \sim \pi_{data}(dx_0) = q_0(dx_0)$, the forward Markov chain generates a sequence of random variables $x_1, x_2 \ldots x_T$ with transition kernel $q_{t|t-1}$ $(\mathrm{d}x_t | x_{t-1})$.
- **The joint distribution of** $x_1, x_2 \ldots x_T$ conditioned on x_0 , denoted as $q_0 \cdot_T (\mathrm{d}(x_1, \ldots, x_T) | x_0)$, may be written as

$$
q_{0:T} (d(x_1,...,x_T) | x_0) = \prod_{t=1}^T q_{t|t-1} (dx_t | x_{t-1}).
$$

- In DDPMs, we handcraft the transition kernel $q_{t|t-1}$ $(\mathrm{d}x_t | x_{t-1})$ to incrementally transform the data distribution q_0 (d x_0) into a tractable reference distribution.
	- Typical design: Gaussian perturbation

$$
q_{t|t-1}(x_t | x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I}\right),
$$

where $\beta_t \in (0,1)$ is a hyperparameter chosen ahead of model training.

Forward process

Gaussian transition kernel allows us to obtain the analytical form of $q_{t|0}$ $(x_t | x_0)$ for all $t \in \{0, 1, \cdots, T\}$. Setting $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=0}^t \alpha_s$, we have

$$
q_{t|0}(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\overline{\alpha}_t} x_0, (1 - \overline{\alpha}_t) \mathbf{I}).
$$

Given x_0 , we can easily obtain a sample of x_t by sampling a Gaussian vector $\epsilon_t \sim \mathcal{N}(0, I)$ and applying the transformation

$$
x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t.
$$

When $\bar{\alpha}_T \approx 0$, x_T is almost Gaussian in distribution,

$$
q_T(x_T) := \int q_{T|0} (x_T | x_0) q_0 (x_0) dx_0 \approx \mathcal{N}(x_T; \mathbf{0}, \mathbf{I}).
$$

Backward process

- For generating new data samples, DDPMs start by sampling the reference distribution and then gradually remove noise by running a learnable Markov chain backward in time.
- The reverse Markov chain is parameterized by a reference distribution $\pi_{\text{ref}}(x_T) = \mathcal{N}(x_T; 0, I)$ and a learnable transition kernel

$$
p_{t-1|t}^{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_t^{\theta}(x_t), \Sigma_t^{\theta}(x_t))
$$

where θ denotes model parameters, and the mean $\mu^{\theta}_t\left(x_t\right)$ and variance $\Sigma_{t}^{\theta}\left(x_{t}\right)$ are parameterized by deep neural networks.

Data generation

- Sample $x_T \sim \pi_{\text{ref}}(\cdot)$,
- iteratively sample $x_{t-1} \sim p^\theta_{t-1|t} \left(\cdot \mid x_t \right)$ until $t=1.$

Diffusion model principles

Figure 4: Diffusion models smoothly perturb data by adding noise, then reverse this process to generate new data from noise.

Variational Inference

 \blacksquare Objective: Adjust the parameter θ so that the joint distribution of the reverse Markov chain

$$
p_{0:T}^{\theta}(x_0, x_1, \cdots, x_T) = p_{ref}(x_T) \prod_{t=1}^T p_{t-1|t}^{\theta}(x_{t-1} | x_t)
$$

matches

$$
q_{0:T}(x_0,x_1,\dots,x_T) := q_0(x_0) \prod_{t=1}^T q_{t|t-1}(x_t | x_{t-1}).
$$

Training is performed by maximizing a variational bound:

$$
\mathbb{E}_{q_0} \left[-\log p^{\theta} (x_0) \right] \leq \mathbb{E}_{q_0, T} \left[-\log \frac{p_{0:T}^{\theta} (x_{0:T})}{q_{1:T|0} (x_{1:T} | x_0)} \right]
$$

= $\mathbb{E}_{q_0, T} \left[-\log p_T (x_T) - \sum_{t \geq 1} \log \frac{p_{t-1|t}^{\theta} (x_{t-1} | x_t)}{q_{t|t-1} (x_t | x_{t-1})} \right] =: L^{\theta}$

Variational inference with variance reduction

 L^{θ} might be rewritten using the <code>backward</code> representation of the forward noising process

$$
q_{1:T|0}(x_{1:T}|x_0) = \prod_{t=1}^T q_{t|t-1}(x_t|x_{t-1})
$$

= $q_{T|0}(x_T|x_0) \prod_{t=2}^T q_{t-1|t}(x_{t-1}|x_t, x_0)$

With this backward decomposition, L^θ writes

$$
L^{\theta} = \mathbb{E}_{q_0, T} \left[-\log \frac{p_T(x_T)}{q_{T|0}(x_T | x_0)} - \sum_{t=2}^{T} \log \frac{p_{t-1|t}^{\theta}(x_{t-1} | x_t)}{q_{t-1|t,0}(x_{t-1} | x_t, x_0)} - \log p_{0|1}^{\theta}(x_0 | x_1) \right]
$$

$$
= \mathbb{E}_{q_{0:T}} \left[D_{\text{KL}} (q_{T|0} (\cdot \mid x_0) \Vert p_{T} (\cdot)) - \sum_{t=2}^{T} D_{\text{KL}} (q_{t-1|t,0} (\cdot \mid x_t, x_0) \Vert p_{t-1|t}^{\theta} (\cdot \mid x_t)) - \log p_{0|1}^{\theta} (x_0 \mid x_1) \right]
$$

Variational inference with variance reduction

forward posteriors are tractable when conditioned on x_0 :

$$
q_{t-1|t,0} (x_{t-1} | x_t, x_0) = \mathcal{N} \left(x_{t-1}; \tilde{\boldsymbol{\mu}}_t (x_t, x_0), \tilde{\beta}_t \mathbf{I} \right)
$$

where $\tilde{\boldsymbol{\mu}}_t (x_t, x_0) := \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} x_0 + \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} x_t$
and $\tilde{\beta}_t := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$

KL divergences are comparisons between Gaussian distributions with closed form expressions: taking $\Sigma_{t}^{\theta}(x_{t}) = \tilde{\beta}_{t}I$,

$$
D_{\mathrm{KL}}\left(q_{t-1|t,0}\left(\cdot\mid x_{t},x_{0}\right)\|p_{t-1|t}^{\theta}\left(\cdot\mid x_{t}\right)\right)=\frac{1}{2\tilde{\beta}_{t}}\|\tilde{\mu}_{t}(x_{t},x_{0})-\mu_{t}^{\theta}(x_{t})\|^{2}.
$$

Variational inference with variance reduction

■ Setting

$$
\mu_t^{\theta}(x_t) = \tilde{\mu}_t(x_t, \hat{x}_{0|t}^{\theta}(x_t)),
$$

we get

$$
D_{\mathrm{KL}}\left(q_{t-1|t,0}\left(\cdot\mid x_{t},x_{0}\right)\|p_{t-1|t}^{\theta}\left(\cdot\mid x_{t}\right)\right)=w_{t}\|x_{0}-\hat{x}_{0|t}^{\theta}(x_{t})\|^{2}.
$$

with $w_t = \bar{\alpha}_{t-1}\beta_t/(1-\bar{\alpha}_{t-1})(1-\bar{\alpha}_t)$.

Hence, criterion L^{θ} rewrites

$$
L^{\theta} = \sum_{t=2}^{T} w_t \mathbb{E}_{q_0 \otimes \mathcal{N}(0,\mathcal{I})} [\|x_0 - \hat{x}_{0|t}^{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon) \|^2]
$$

which amount to compute $\hat{x}_{0|t}^{\theta}(x_t)$ as a predictor of the initial state x_0 from the current state x_t .

■ This criterion is the denoising score matching.

Noise prediction

Using that $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t$, we have

$$
x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_t)
$$

Choosing $\hat{x}_{0|t}^{\theta}(x_t)=(1/\sqrt{\bar{\alpha}_t})(x_t-\sqrt{1-\bar{\alpha}_t}\hat{\epsilon}_{0|t}^{\theta}(x_t)),$ the criterion L^{θ} may be equivalently expressed as

$$
L^{\theta} = \sum_{t=2}^{T} \tilde{w}_t \mathbb{E}_{q_0 \otimes \mathcal{N}(0,\mathrm{I})} [\|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}_{0|t}^{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon})\|^2]
$$

where

$$
\tilde{w}_t = \frac{\beta_t}{\alpha_t (1 - \bar{\alpha}_{t-1})}
$$

[A continuous-time perspective](#page-22-0)

Ornstein-Uhlenbeck Noising process

- Consider a diffusion process $\left\{X_t\right\}_{t=0}^T$ that starts from the data distribution $q_0(\mathrm{d}x) \equiv \pi_{\text{data}}(\mathrm{d}x)$ at time $t = 0$. The notation $q_t(\mathrm{d}x)$ refers to the marginal distribution of the diffusion at time $0 \le t \le T$.
- Assume furthermore that at time $t = T$, the marginal distribution is (very close to) a reference distribution $q_T(\mathrm{d}x) = \pi_{\text{ref}}(\mathrm{d}x)$ that is straightforward to sample from, e.g. $\mathcal{N}(0, I)$.
- This diffusion process is the noising process. It is often chosen as an Ornstein-Uhlenbeck (OU) diffusion,

$$
dX_t = -\frac{1}{2}X_t dt + dW_t
$$

OU diffusion is reversible w.r.t. $\pi_{ref} = \mathcal{N}(0, I)$: the conditional distribution of $X_{t+s} | X_t = x_t$ is $\mathcal{N}(\alpha_s x_t, \sigma_s^2 I)$, with

$$
\alpha_s = \sqrt{1 - \sigma_s^2} \quad \sigma_s^2 = 1 - e^{-s}
$$

Denote

$$
F(s, x, y) \propto \exp \left\{-\frac{(y - \alpha_s x)^2}{2\sigma_s^2}\right\}.
$$

the forward transition from x to y in " s " amount of time.

Reverse diffusion I (informal)

- the DDPM strategy consists in sampling from the Gaussian reference measure π_{ref} at time $t = T$ and simulate the OU process backward in time.
- In other words, one would like to simulate from the reverse process \overleftarrow{X}_t defined as

$$
\overleftarrow{X}_s = X_{T-s}
$$

- The reverse process is distributed as $\overleftarrow{X}_0 \sim \pi_{\sf ref}$ at time $t=0$ and, crucially, we have that $\overline{X}_T \sim \pi_{\text{data}}$.
- The reverse diffusion follows the dynamics (Hausmann, Pardoux, 1986; Millet, Nualart, Sanz, 1989)

$$
d\overleftarrow{X}_t = +\frac{1}{2}\overleftarrow{X}_t dt + \nabla \log q_{T-t}\left(\overleftarrow{X}_t\right) dt + dB_t
$$

where B is another Wiener process [the notation B emphasizes that there is no link between this Wiener process and the one used to simulate the forward process].

Reverse diffusion II (informal)

- To simulate the reverse diffusion, one needs to be able to estimate the score ∇ log $q_{T-t}(x)$.
- \blacksquare In practice, the score is unknown and need to be approximated

$$
s_t^{\theta}(x) \approx \nabla_x \log q_t(x)
$$

which is often parameterized by a neural network.

Since

$$
\log q_t(x) = \log \int F(t, x_0, x) \, \pi_{\text{data}} \, (\text{d}x_0)
$$

the analytical expression of $F(t, x_0, x)$ gives that (Tweedie formula)

$$
\nabla_x \log q_t(x) = -\frac{x - \alpha_t \widehat{x}_0(x, t)}{\sigma_t^2}
$$

where $\hat{x}_0(x, t) = \mathbb{E} [X_0|X_t = x]$ is a denoising estimate of x_0 given a noisy estimate $X_t = x$ at time t

Estimation of the score

- To estimate the score, one only needs to train a denoising function $\widehat{x}_{0|t}^{\theta}(x)$.
- It is a simple regression problem: take pairs (X_0, X_t) that can be generated as

$$
X_0 \sim \pi_{\text{data}} \qquad \text{and} \qquad X_t = \alpha_t X_0 + \sigma_t Z_t
$$

with $Z_t \sim \mathcal{N}(0, I)$ and minimize the Mean Squared Error (MSE) loss, i.e.

$$
\mathbb{E}_{q_{0,t}}\left[\left\|X_0-\hat{x}_{0|t}^{\theta}(X_t)\right\|^2\right]
$$

with stochastic gradient descent or any other stochastic optimization procedure.

■ The score is then defined as

$$
s_t^{\theta}(x) = -\frac{x - \alpha_t \hat{x}_t^{\theta}(x)}{\sigma_t^2}
$$

Time reversal formula for a diffusion process

General time reversal formulas for diffusion processes are well known since the 80 's. Consider a diffusion process Y in \mathbb{R}^n satisfying

$$
dY_t = b_t(Y_t) dt + \sigma_t(Y_t) dB_t, \quad 0 \le t \le T,
$$

with B a Brownian motion, b a drift vector field and σ a matrix field associated to the diffusion field a $:= \sigma \sigma^{\top}$

Assuming that the law of Y_t is absolutely continuous at each time t , under appropriate assumptions, the time-reversed process Y^* is again a diffusion process with diffusion matrix field $\mathrm{a}_t^* = \mathrm{a}_{T-t}$ and drift field

$$
b_t^*(y) = -b_{T-t}(y) + \nabla \cdot (\mu_{T-t} a_{T-t})(y) / \mu_{T-t}(y),
$$

where μ_t is the density of the law of Y_t with respect to Lebesgue measure.

This is not a straightforward result because a reversed semimartingale might not be a semimartingale !.

For the identity

$$
b_t^*(y) = -b_{T-t}(y) + \nabla \cdot (\mu_{T-t} a_{T-t})(y) / \mu_{T-t}(y),
$$

to hold, it is assumed in that b is locally Lipschitz and that either a is bounded away from zero or that the derivative ∇a in the sense of distribution is controlled locally.

Haussmann and Pardoux take a PDE approach; Millet, Nualart and Sanz rely on stochastic calculus of variations.

The existence of an absolutely continuous density follows from a Hörmander type condition (PDE formulation in Haussman et al. and consequence of Malliavin calculus in Millet et al.).

Time reversal formula for a diffusion process

Föllmer's approach significantly departs from these strategies. Under the simplifying hypothesis that a is the identity matrix, the law P of Y has a finite entropy

 $H(P | R) < \infty$

with respect to the law R of a Brownian motion with some given initial probability distribution.

In particular, the drift field b of P satisfies $\int_{[0,T]\times \mathbb{R}^n} \left|b_t(y)\right|^2 \mu_t(y) dt dy < 0$ ∞ and might be singular, rather than locally Lipschitz.

As a consequence of this finite entropy assumption, Föllmer proves the time reversal formula

$$
b_t^*(y) = -b_{T-t}(y) + \nabla \log \mu_{T-t}(y)
$$

(recall $a = Id$) where the derivative is in the sense of distributions, without invoking any already known result about the regularity of μ .

Figure 5: From [Dockhorn et al. \(2022\)](#page-112-2)

[Feyman-Kac representation](#page-32-0)

Context

Bayesian linear inverse problem:

$$
Y = AX + \sigma_y Z, \quad \text{where} \quad Z \sim \mathcal{N}(\mathbf{0}_{d_x}, \mathbf{I}_{d_x}), \quad X \sim p_0, \quad \sigma_y \ge 0 \,.
$$

Context

Bayesian linear inverse problem:

$$
Y = AX + \sigma_y Z, \quad \text{where} \quad Z \sim \mathcal{N}(\mathbf{0}_{d_x}, \mathbf{I}_{d_x}), \quad X \sim p_0, \quad \sigma_y \ge 0 \,.
$$

Objective: Sample the distribution of X given a realisation y of Y .

Context

Bayesian linear inverse problem:

 $Y = AX + \sigma_y Z$, where $Z \sim \mathcal{N}(\mathbf{0}_{d_x}, \mathbf{I}_{d_x}), \quad X \sim p_0, \quad \sigma_y \ge 0$.

Objective: Sample the distribution of X given a realisation y of Y.

Posterior samples

We focus on the specific case where the prior p_0 is the marginal w.r.t. x_0 of Denoising Diffusion Model. The posterior is

$$
p_0^y(\mathrm{d}x_0) = \frac{1}{\mathcal{Z}^y} \int g_0^y(x_0) \prod_{k=0}^{n-1} p_{k|k+1}(\mathrm{d}x_k | x_{k+1}) p_n(\mathrm{d}x_n).
$$

- The posterior can be interpreted as the marginal of a (time-reversed) Feynman–Kac (FK) model with non-trivial potential only at $k = 0$!
- \blacksquare In this work, we twist, without modifying the law of the FK model, the backward transitions $p_{k|k+1}$ by potentials depending on the observation y ; see e.g. for a similar idea for rare event simulation (see, e.g., Cérou et al., 2012).

"Forward" smoothing decomposition

■ Define, for all $k \in [0, n]$, the backward functions

$$
\beta_{0|k}^y(x_k) := \int g_0^y(x_0) \, p_{0|k}(\mathrm{d}x_0 | x_k)
$$

■ The backward functions satisfy the recursion:

$$
\beta_{0|k+1}^y(x_{k+1}) = \int \beta_{0|k}^y(x_k) p_{k|k+1}(\mathrm{d}x_k | x_{k+1}).
$$

■ Define the forward smoothing kernels (FSK) for $k \in [0, n-1]$

$$
p_{k|k+1}^{y}(\mathrm{d}x_{k}|x_{k+1}) := \frac{\beta_{0|k}^{y}(x_{k})}{\beta_{0|k+1}^{y}(x_{k+1})} p_{k|k+1}(\mathrm{d}x_{k}|x_{k+1}),
$$

$$
(=\mathrm{Law}(X_{k}|Y=y, X_{k+1}=x_{k+1})).
$$

"Forward" smoothing decomposition

The posterior distribution can be written in terms of forward smoothing kernels

$$
p_0^y(\mathrm{d}x_0) = \int p_n^y(\mathrm{d}x_n) \prod_{k=0}^{n-1} p_{k|k+1}^y(\mathrm{d}x_k | x_{k+1}).
$$

where

$$
p_n^y(\mathrm{d}x_n) = \frac{\beta_{0|n}^y(x_n)p_n(\mathrm{d}x_n)}{\mathcal{Z}^y}
$$

Most of the recent works to sample from p_0^y use the forward smoothing decomposition with different approximation of the intractable forward smoothing kernels. [Chung et al. \(2023\)](#page-111-1); [Song](#page-114-0) [et al. \(2023\)](#page-114-0); [Zhang et al. \(2023\)](#page-115-0); [Boys et al. \(2023\)](#page-110-0); [Trippe et al.](#page-115-1) [\(2023\)](#page-115-1); [Wu et al. \(2023\)](#page-115-2).

The DDPM is based on the assumption the forward smoothing decomposition is a good approximation the time reversal of the forward Markov chain initialized at p_0^y , i.e.

$$
p_0^y(\mathrm{d}x_0)\prod_{k=1}^n q_{k|k-1}(\mathrm{d}x_k|x_{k-1}) \approx p_n^y(\mathrm{d}x_n)\prod_{k=0}^{n-1} p_{k|k+1}^y(\mathrm{d}x_k|x_{k+1}),
$$

which suggests the following approximation

$$
p_{k|k+1}^{y}(\mathrm{d}x_{k}|x_{k+1}) \approx \int q_{k|0,k+1}(\mathrm{d}x_{k}|x_{0},x_{k+1}) p_{0|k+1}^{y}(\mathrm{d}x_{0}|x_{k+1})
$$

where

$$
p_{0|k+1}^{y}(\mathrm{d}x_{0}|x_{k+1}) \propto p_{0}^{y}(\mathrm{d}x_{0})q_{k+1|0}(x_{k+1}|x_{0})
$$

[\(Ho et al., 2020;](#page-112-0) [Song et al., 2021a\)](#page-114-1) suggested to use the DDPM approximation of the backward kernel is :

$$
p_{k|k+1}^{y}(\mathrm{d}x_{k}|x_{k+1}) = q_{k|0,k+1}(\mathrm{d}x_{k}|\mathbb{E}[X_{0}|X_{k+1}=x_{k+1},Y=y],x_{k+1})
$$

where

$$
\mathbb{E}[X_0|X_{k+1}, Y = y] := \int x_0 p_{0|k+1}^y(\mathrm{d}x_0|X_{k+1}).
$$

Conditional score

By Tweedie's formula,

$$
\mathbb{E}[X_0|X_k,Y=y] = \frac{X_k + (1-\alpha_k)\nabla_{x_k}\log p_k^y(X_k)}{\sqrt{\alpha_k}},
$$

where

$$
p_k^y(x_k) := \int p_0^y(\mathrm{d}x_0) q_{k|0}(x_k|x_0)
$$

$$
\propto \int g_0^y(x_0) p_0(\mathrm{d}x_0) q_{k|0}(x_k|x_0)
$$

$$
\propto \int g_0^y(x_0) p_{0|k}(\mathrm{d}x_0|x_k) p_k(x_k).
$$

Hence,

$$
\nabla_{x_k} \log p_k^y(x_k) = \nabla_{x_k} \log \beta_{0|k}^y(x_k) + \nabla_{x_k} \log p_k(x_k).
$$

Diffusion posterior sampling I

 $\nabla_{x_k} \log p_k^y(x_k) = \nabla_{x_k} \log \beta_0^y$ $\int_{0|k}^{y}(x_k)+\nabla_{x_k}\log p_k(x_k),$

- A pre-trained score network (for $\nabla_{x_k} \log p_k(x_k)$) is available.
- But the gradient of the log backward function is intractable in practice.

Using the pre-trained approximation $\hat{x}_{0|k}(X_k)$ of $\mathbb{E}[X_0|X_k]$, [Chung et al.](#page-111-1) [\(2023\)](#page-111-1) proposed the following approximation,

$$
\nabla_{x_k} \log \beta_{0|k}^y(x_k) \approx \nabla_{x_k} \log g_0^y(\hat{x}_{0|k}(x_k)).
$$

They then sample approximately from the FSK in the following way; given X^y_k

• First sample
$$
X_{k-1} \sim p_{k-1|k}(\cdot|X_k^y)
$$

- Then set $X_{k-1}^y = X_{k-1} + \gamma_k \nabla_{x_k} \log g_0^y(\hat{x}_{0|k}(X_k^y))$
- \bullet γ_k is in practice a highly sensitive parameter, crucial for good performance. 33/63

Diffusion posterior sampling II

- The DPS approximation by [Chung et al. \(2023\)](#page-111-1) boils down to assuming that $p_{0|k}(\mathrm{d}x_0|x_k) \approx \delta_{\hat{x}_{0|k}}(x_k)(\mathrm{d}x_0)$.
- This is a very crude approximation that becomes accurate only as $k \rightarrow 0$.

[Song et al. \(2023\)](#page-114-0) consider the sample sampling scheme but propose instead the following Gaussian approximation

$$
p_{0|k}(\mathrm{d}x_0|x_k) \approx \mathcal{N}(\mathrm{d}x_0; \hat{x}_{0|k}(x_k), r_k^2 \mathrm{I}_{d_x}), \quad r_k^2 = \frac{\sigma_k^2}{1 + \sigma_k^2},
$$

in which case, we obtain the following approximation

$$
\beta_{0|k}^y(x_k) \approx \mathcal{N}(y; A\hat{x}_{0|k}(x_k), r_k^2 A A^{\mathsf{T}} + \sigma_y^2 \mathbf{I}_{d_y}).
$$

- **The Gaussian approximation above becomes exact in the case where** $p_0 = \mathcal{N}(\mathbf{0}_{d_x}, \mathrm{I}_{d_x})$ and *variance exploding* is used.
- Still, this is not a realistic approximation in the more general case.

Tweedie Moment Projected diffusion

[Boys et al. \(2023\)](#page-110-0) instead consider a Gaussian approximation $\hat{p}_{0|k}(\cdot|x_k)$ of $p_{0|k}(\cdot|x_k)$:

$$
\hat{p}_{0|k}(\cdot|x_k) := \underset{\mu,\Sigma}{\text{argmin}} \,\text{KL}(p_{0|k}(\cdot|x_k) \parallel \mathcal{N}(\mu,\Sigma)).
$$

and

$$
\hat{p}_{0|k}(\cdot|x_k) = \mathcal{N}\big(\mathbb{E}[X_0|X_k=x_k], \mathbb{C}\text{ov}(X_0|X_k=x_k)\big),
$$

where the expectation and covariance are under $p_{0|k}(\cdot|x_k)$. Under the same assumption as previously (backward=forward), it can be shown that

$$
Cov(X_0|X_k) = \frac{1 - \alpha_k}{\sqrt{\alpha_k}} \nabla_{x_k} \mathbb{E}[X_0|X_k]
$$

which may be approximated by plugging in $\hat{x}_{0|k}(X_k)$ to approximate $\nabla_{x_k} \mathbb{E}[X_0|X_k].$

- The resulting covariance approximation is not symmetric nor positive definite.
- Extremely expensive to compute. In practice further crude approximations are introduced.

[Monte Carlo guided diffusion](#page-45-0)

General Feynman–Kac model

Introduce intermediate positive potentials $(g_k^y)_{k=0}^n$, each being a function on \mathbb{R}^{d_x} , and write

$$
p_0^y(\mathrm{d}x_0) = \frac{1}{\mathcal{Z}^y} \int g_n^y(x_n) \, p_n(\mathrm{d}x_n)
$$

$$
\times \prod_{k=0}^{n-1} \frac{g_k^y(x_k)}{g_{k+1}^y(x_{k+1})} \, p_{k|k+1}(\mathrm{d}x_k | x_{k+1}).
$$

- Because the $g_n^y(x_n) \prod_{k=0}^{n-1}$ $g_k^y(x_k)$ $\frac{g_{k}^{y}(x_{k})}{g_{k+1}^{y}(x_{k+1})}=g_{0}^{y}(x_{0}),$ the FK is not modified - the potentials are used to render the sampling easier.
- **This allows the posterior of interest to be expressed as the time-zero** marginal of a Feynman-Kac model with
	- initial law p_n ,
	- Markov transition kernels $(p_{k|k+1})_{k=0}^{n-1}$
	- Potentials g_n^y and $(x_k, x_{k+1}) \mapsto g_k^y(x_k)/g_{k+1}^y(x_{k+1})$.

Alternatively, the previous decomposition defines a sequence of distributions

 $p_k^y(\mathrm{d}x_k) \propto g_k^y(x_k)p_k(\mathrm{d}x_k), \quad k \in [0, n],$

where the posterior of interest is the terminal distribution at $k = 0$.

- If we have a particle approximation of p_{k+1}^y then we can evolve it into a particle approximation of $p^y_k \leadsto$ we recursively build an empirical approximation of p_0^y .
- The choice of potentials $\{g_k^y\}_{k \in [\![0,n]\!]}$ is crucial; we need to ensure that p_k^y is close enough to p_{k+1}^y so that we can bridge the intermediate distributions efficiently.

Posterior sampling proposal: recursion

Consider the following particle approximation of p_{k+1}^y

$$
p_{k+1}^{N,y} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{k+1}^{i}} ,
$$

Recall that $p_k(\mathrm{d}x_k) = \int p_{k|k+1}(\mathrm{d}x_k | x_{k+1}) p_{k+1}(\mathrm{d}x_{k+1}),$

Posterior sampling proposal: recursion

Consider the following particle approximation of p_{k+1}^y

$$
p_{k+1}^{N,y} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{k+1}^{i}} ,
$$

Recall that $p_k(\mathrm{d}x_k) = \int p_{k|k+1}(\mathrm{d}x_k | x_{k+1}) p_{k+1}(\mathrm{d}x_{k+1}),$

$$
p_k^y(\mathrm{d}x_k) = \frac{\int \frac{g_k^y(x_k)}{g_{k+1}^y(x_{k+1})} p_{k|k+1}(\mathrm{d}x_k|x_{k+1}) p_{k+1}^y(\mathrm{d}x_{k+1})}{\int \frac{g_k^y(z_k)}{g_{k+1}^y(z_{k+1})} p_{k|k+1}(\mathrm{d}z_k|z_{k+1}) p_{k+1}^y(\mathrm{d}z_{k+1})},
$$

Posterior sampling proposal: recursion

Consider the following particle approximation of p_{k+1}^y

$$
p_{k+1}^{N,y} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{k+1}^{i}} ,
$$

Recall that $p_k(\mathrm{d}x_k) = \int p_{k|k+1}(\mathrm{d}x_k | x_{k+1}) p_{k+1}(\mathrm{d}x_{k+1}),$

$$
p_k^y(\mathrm{d}x_k) = \frac{\int \frac{g_k^y(x_k)}{g_{k+1}^y(x_{k+1})} p_{k|k+1}(\mathrm{d}x_k|x_{k+1}) p_{k+1}^y(\mathrm{d}x_{k+1})}{\int \frac{g_k^y(z_k)}{g_{k+1}^y(z_{k+1})} p_{k|k+1}(\mathrm{d}z_k|z_{k+1}) p_{k+1}^y(\mathrm{d}z_{k+1})},
$$

and hence

$$
p_k^y(\mathrm{d}x_k) \propto \int \underbrace{\underbrace{\int g_k^y(z_k)p_k(\mathrm{d}z_k|x_{k+1})}_{g_{k+1}^y(x_{k+1})} p_k^y(\mathrm{d}x_k|x_{k+1}) p_{k+1}^y(\mathrm{d}x_{k+1})}_{:=\widetilde{\omega}_k(x_{k+1})},
$$

where $p_k^y(\mathrm{d}x_k|x_{k+1})\propto g_k^y(x_k)p_{k|k+1}(\mathrm{d}x_k|x_{k+1})\to$ available in closed form if we use a Gaussian potential with mean linear in x_k .

Posterior sampling proposal: SMC approximation

$$
p_k^y(\mathrm{d}x_k) = \int p_k^y(\mathrm{d}x_k | x_{k+1}) \frac{\widetilde{\omega}_k(x_{k+1}) p_{k+1}^y(\mathrm{d}x_{k+1})}{\int \widetilde{\omega}_k(z_{t+1}) p_{k+1}^y(\mathrm{d}z_{k+1})},
$$

Assume $p_{k}^{N,y}=\frac{1}{N}\sum_{i=1}^{N}\delta_{\xi_{k+1}^{i}}$ is a particle approximation of $p_{k+1}^{N,y}.$

 \rightsquigarrow Weight:

$$
p_k^{N,y}(\cdot) \approx \sum_{i=1}^N \frac{\widetilde{\omega}_k(\xi_{k+1}^i)}{\sum_{j=1}^N \widetilde{\omega}_k(\xi_{k+1}^j)} p_k^y(\cdot | \xi_{k+1}^i).
$$

→ **Resample:** Draw $A_{k+1}^{1:N} \stackrel{\text{iid}}{\sim} \text{Categorical}(\{\omega_k^j\}_{j=1}^N)$ where $\omega_k^j \propto \widetilde{\omega}_t(\xi_{k+1}^j)$.

$$
\rightsquigarrow \textbf{Mutate: Sample } \xi^i_k \sim p^y_k(\cdot|\xi^{A^i_{k+1}}_{k+1}) \text{ for } i \in [1:N],
$$

$$
p_k^{N,y} = \frac{1}{N} \sum_{i=1}^N \delta_{\xi_k^i}.
$$

[Gordon et al. \(1993\)](#page-112-1); [Del Moral \(2004\)](#page-111-2); [Cappe et al. \(2005\)](#page-110-1); [Chopin et al. \(2020\)](#page-111-3)

For simplicity (and only in this slide) let $p_0(y)$ be the posterior of the inverse problem

$$
Y = \overline{X}_0, \quad X_0 \sim p_0,
$$

The marginals of the *forward process* initialized at p_0^y are

$$
X_k \stackrel{\mathcal{L}}{=} \sqrt{\overline{\alpha}_k} X_0 + \sqrt{1 - \overline{\alpha}_k} Z, \quad X_0 \sim p_0^y, \quad Z \sim \mathcal{N}(\mathbf{0}_{d_x}, \mathbf{I}_{d_x}),
$$

and so

$$
\overline{X}_k \stackrel{\mathcal{L}}{=} \sqrt{\bar{\alpha}_k} y + \sqrt{1 - \bar{\alpha}_k} \, \overline{Z} \,, \quad \overline{Z} \sim \mathcal{N}(\mathbf{0}_{d_y}, \mathbf{I}_{d_y}) \,.
$$

■ This suggests that one relevant choice of potentials is

$$
g_k^y(x_k) = \mathcal{N}(\sqrt{\alpha_k}y; x_k, (1 - \alpha_k)I_{d_y}).
$$

More generally, we let the variance be a free parameter $\sigma^2_{y,k}.$

Our proposal in the general case is

$$
p_k^y(\mathrm{d}x_k) \propto g_k^y(x_k) p_k(\mathrm{d}x_k), \quad g_k^y(x_k) := \mathcal{N}(\sqrt{\bar{\alpha}_k}y; Ax_k, \sigma_{y,k}^2 \mathrm{I}_{d_y})
$$

■ This particular choice of potential allows us to compute in closed form the auxiliary transition kernel $\propto g_k^y(x_k)p_{k|k+1}(\mathrm{d} x_k|x_{k+1})$ we use for our particle approximations.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 6: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 7: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 8: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 9: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 10: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 11: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 12: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 13: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 14: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 15: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 $\leadsto \{p_k^y\}_{k=1}^n$ is available in closed form for the Gaussian mixture example.

Figure 16: Left plot: samples from the prior p_0 and posterior p_0^y . Right plot: samples from the posterior proposals p_k^y for time steps ranging from $n:=500$ to 0.

 \rightarrow 25 Gaussian mixture example with means

$$
\mu_{i,j} = (8i, 8j, \dots, 8i, 8j), \quad (i,j) \in \{-2, \dots, 2\}
$$

with unit convariance matrices. We randomly draw the weights of the mixture and the forward operator A and σ_y for the inverse problem $\leadsto \nabla \log p_k$ is available in **closed form**.

 \rightarrow 20 component mixture of translated and rotated Funnel distributions. We learn the score and consider the ground truth to be samples from parallel NUTS with very long chains.

Toy examples

Figure 17: Sliced Wasserstein between samples of the target posterior and the empirical measure returned by each method. Top: Gaussian mixture. Bottom: Funnel mixture. We show the 95% CLT interval over 20 seeds.

DPS: [Chung et al. \(2023\)](#page-111-1), DDRM: [Kawar et al. \(2022\)](#page-113-0)

Toy examples

- \rightarrow Diffusion models learned on different datasets of image sizes varying from (64, 64, 3) to (256, 256, 3).
- \rightsquigarrow We run parallel SMCs with $N = 64$ particles.

Super-resolution example

Deblurring example

Inpainting example

[Divide-and-conquer posterior](#page-73-0) [sampling](#page-73-0)

Sequence of distributions

Let $(k_{\ell})_{\ell=0}^{L}$ be an increasing sequence in $[0, n]$ with $k_0 = 0$ and $k_L = n$. Consider

$$
p_{k_{\ell}}^{y}(\mathrm{d}x_{k_{\ell}}) \propto g_{k_{\ell}}^{y}(x_{k_{\ell}})p_{k_{\ell}}(\mathrm{d}x_{\ell}),
$$

with

$$
g_{k_{\ell}}^{y}(x_{k_{\ell}}) = \mathcal{N}(\sqrt{\alpha_{k_{\ell}}} y; Ax_{k_{\ell}}, \sigma_{y, k_{\ell}}^{2} I_{d_{y}}).
$$

- \blacksquare L is typically much smaller than n.
- This is the same sequence of distribution as in our SMC approach but now we only consider a small number L of intermediate distributions.
- Our goal is to recursively sample from each one of them without having to evolve N particles in parallel.
- We also want to solve the "image inconsistency" problem observed in our SMC method.

Recursion

Since
$$
p_{k_{\ell}}(\mathrm{d}x_{k_{\ell}}) = \int \left\{ \prod_{j=k_{\ell}}^{k_{\ell+1}-1} p_{j|j+1}(\mathrm{d}x_{j}|x_{j+1}) \right\} p_{k_{\ell+1}}(\mathrm{d}x_{k_{\ell+1}}),
$$

we can write $p_{k_\ell}^y$ in terms of forward smoothing kernels, i.e.

$$
p_{k_{\ell}}^{y}(\mathrm{d}x_{k_{\ell}}) = \int \left\{ \prod_{j=k_{\ell}}^{k_{\ell+1}-1} p_{j|j+1}^{y,\ell}(\mathrm{d}x_{j}|x_{j+1}) \right\} p_{k_{\ell+1}}^{y,\ell}(\mathrm{d}x_{k_{\ell+1}})
$$

where

$$
p_{k_{\ell+1}}^{y,\ell}(\mathrm{d}x_{k_{\ell+1}}) \propto \beta_{k_{\ell}|k_{\ell+1}}^{y,\ell}(x_{k_{\ell+1}}) p_{k_{\ell+1}}(\mathrm{d}x_{k_{\ell+1}}),
$$

$$
p_{j|j+1}^{y,\ell}(\mathrm{d}x_{j}|x_{j+1}) \propto \beta_{k_{\ell}|j}^{y,\ell}(x_{j}) p_{j|j+1}(\mathrm{d}x_{j}|x_{j+1}),
$$

and for all $j \in [\![k_{\ell}, k_{\ell+1}]\!]$

$$
\beta_{k_{\ell}|j}^{y,\ell}(x_j) := \int g_{k_{\ell}}^{y}(x_{k_{\ell}}) p_{k_{\ell}|j}(\mathrm{d}x_{k_{\ell}}|x_j).
$$

DCPS summary

Figure 18: Illustration of idealized DCPS.

Starting at an approximate sample $X_{k_{\ell+1}}^y$ from $p_{k_{\ell+1}}^y$

- Use ULA initialized at $X_{k_{\ell+1}}^y$ to obtain an approximate sample from $X^{y,\ell}_{k_{\ell+1}}$.
- Starting from $X^{y,\ell}_{k_{\ell+1}}$, simulate a Markov chain with transition kernels $(p_{j|j+1}^{y,\ell})_{j=k_{\ell+1}-1}^{k_{\ell}}$
- Repeat until the posterior of interest is reached.
- The first source of intractability are the backward functions $\beta_{k}^{y,\ell}$ $x_{\ell}^{y,\ell}$
- This is the same problem as before, however note that now they are expressed as an integral under $p_{k_{\ell}|j}(\cdot|x_j)$ with $j \in [\![k_{\ell}+1, k_{\ell+1}]\!]$ instead of $p_{0|j}(\cdot|x_j)$ for $j \in [\![0,n]\!]$.
- This is more convenient since we expect Gaussian approximations of $p_{k_\ell|j}(\cdot|x_j)$ to be more accurate than those of $p_{0|j}(\cdot|x_j).$

Backward kernel approximation

Assume again that forward=backward. Then for $j \in [k_{\ell}+1, k_{\ell+1}],$

$$
p_{k_{\ell}|j}(\mathrm{d}x_{k_{\ell}}|x_j) = \int q_{k_{\ell}|0,j}(\mathrm{d}x_{k_{\ell}}|x_0,x_j) p_{0|j}(\mathrm{d}x_0|x_j),
$$

Let $\hat{p}_{0|j}(\cdot|x_j)$ be an approximation of $p_{0|j}(\cdot|x_j)$ and define

$$
\hat{p}_{k_{\ell}|j}(\mathrm{d}x_{k_{\ell}}|x_j) = \int q_{k_{\ell}|0,j}(\mathrm{d}x_{k_{\ell}}|x_0,x_j)\hat{p}_{0|j}(\mathrm{d}x_0|x_j)
$$

- For DPS [\(Chung et al., 2023\)](#page-111-0), $\hat{p}_{0|j}(\mathrm{d}x_0|x_j) = \delta_{\hat{x}^{\theta}_{0|j}(x_j)}(\mathrm{d}x_0)$.
- For [Song et al. \(2023\)](#page-114-0), $\hat{p}_{0|j}(\mathrm{d}x_0|x_j) = \mathcal{N}(\mathrm{d}x_0; \hat{x}_{0|j}^{\theta}(x_j), r_j^2 \,\mathrm{I}_{d_y}).$
- In both cases, $\hat{p}_{k_{\ell}|j}(\cdot|x_j)$ is computable in closed form. We write $\hat{p}_{k_{\ell}|j}(\mathrm{d}x_{k_{\ell}}|x_j) = \mathcal{N}(\mathrm{d}x_{k_{\ell}};\mu_{k_{\ell}|j}(x_j), \sigma^2_{k_{\ell}|j}\mathrm{I}_{d_x}).$

where both the mean and variance depend on the approximation used.

Backward kernel approximation

Proposition

Assume forward=backward. For all $\ell \in [0, L]$, $j \in [k_{\ell} + 1, k_{\ell+1}]$,

$$
W_2(\hat{p}_{k_{\ell}|j}(\cdot|x_j), p_{k_{\ell}|j}(\cdot|x_j)) \leq \frac{\sqrt{\alpha_{k_{\ell}}}(1-\alpha_j/\alpha_{k_{\ell}})}{1-\alpha_j} W_2(\hat{p}_{0|j}(\cdot|x_j), p_{0|j}(\cdot|x_j)).
$$

where
$$
\frac{\sqrt{\alpha_{k_\ell}}(1-\alpha_j/\alpha_{k_\ell})}{1-\alpha_j} < 1
$$
 and goes to 0 as $j \to k_\ell$.

- We improve upon the previous approximations by performing Gaussian approximations on intervals $\llbracket k_\ell, k_{\ell+1} \rrbracket$ of moderate size.
- Our approximation of the backward function is then

$$
\beta_{k_{\ell}|j}^{y,\ell}(x_j) \approx \hat{\beta}_{k_{\ell}|j}^{y,\ell}(x_j) := \int g_{k_{\ell}}^{y}(x_{k_{\ell}}) \hat{p}_{k_{\ell}|j}(\mathrm{d}x_{k_{\ell}}|x_j) \n= \mathcal{N}(\sqrt{\alpha_{k_{\ell}}} y; A\mu_{k_{\ell}|j}(x_j), \sigma_{k_{\ell}|j}^2 A A^{\mathsf{T}} + \sigma_{y,\ell}^2 \mathrm{I}_{d_y}).
$$

FSK approximation

Recall that the quantities of interest are

$$
p_{j|j+1}^{y,\ell}(\mathrm{d}x_j|x_{j+1}) \propto \beta_{k_{\ell}|j}^{y,\ell}(x_j) p_{j|j+1}(\mathrm{d}x_j|x_{j+1}),
$$

$$
p_{k_{\ell+1}}^{y,\ell}(\mathrm{d}x_{k_{\ell+1}}) \propto \beta_{k_{\ell}|k_{\ell+1}}^{y,\ell}(x_{k_{\ell+1}}) p_{k_{\ell+1}}(\mathrm{d}x_{k_{\ell+1}}).
$$

Given the previous approximation of the backward function, we replace them instead with

$$
\hat{p}_{j|j+1}^{y,\ell}(\mathrm{d}x_j|x_{j+1}) \propto \hat{\beta}_{k_{\ell}|j}^{y,\ell}(x_j) p_{j|j+1}(\mathrm{d}x_j|x_{j+1}),
$$

$$
\hat{p}_{k_{\ell+1}}^{y,\ell}(\mathrm{d}x_{k_{\ell+1}}) \propto \hat{\beta}_{k_{\ell}|k_{\ell+1}}^{y,\ell}(x_{k_{\ell+1}}) p_{k_{\ell+1}}(\mathrm{d}x_{k_{\ell+1}}),
$$

- Still, while now we can evaluate the density $\hat{p}_{j|j+1}^{y,\ell}(\cdot|x_{j+1})$ we still cannot sample from it.
- We can approximately sample from $\hat{p}_{k_{\ell+1}}^{y,\ell}$ using ULA.

r

For a fixed x_{j+1} we seek a mean-field Gaussian variational approximation of $\hat{p}_{j|j+1}^{y,\ell}(\cdot|x_{j+1})$ by solving

$$
\underset{j|j+1}{\text{argmin}} \left\{\text{KL}(r_{j|j+1}^{y,\ell}(\cdot|x_{j+1}) \parallel \hat{p}_{j|j+1}^{y,\ell}(\cdot|x_{j+1}))\right\},\
$$

where $\mathcal{G}_{\mathrm{D}} := \{ \mathcal{N}(\mu, \mathrm{diag}(\sigma)) : \mu \in \mathbb{R}^{d_x}, \sigma \in \mathbb{R}_{>0}^{d_x} \}.$

We only learn vectors (μ,σ) that depend on the value of $X^{y,\ell}_{j+1}$ and do not seek to generalize as this incurs problem dependent, heavy training.

Variational approximation II

Letting
$$
r_{j|j+1}^{y,\ell}(\cdot|X_{j+1}^{y,\ell}) = \mathcal{N}(\mu_{j|j+1}^{y,\ell}, \text{diag}(e^{s_{j|j+1}^{y,\ell}}))
$$
 where $s_{j|j+1}^{y,\ell} \in \mathbb{R}^{d_x}$,
\n
$$
\mathsf{KL}(r_{j|j+1}^{y,\ell}(\cdot|X_{j+1}^{y,\ell}) \parallel \hat{p}_{j|j+1}^{y,\ell}(\cdot|X_{j+1}^{y,\ell}))
$$
\n
$$
= -\mathbb{E}\big[\log \hat{\beta}_{k_{\ell}|j}^{y,\ell}(\mu_{j|j+1}^{y,\ell} + \text{diag}(e^{s_{j|j+1}^{y,\ell}})Z)\big] + \frac{\|\mu_{j|j+1}^{y,\ell} - \mu_{j|j+1}(X_{j+1}^{y,\ell})\|^2}{2\sigma_{m|m+1}^2}
$$
\n
$$
- \frac{1}{2} \sum_{i=1}^{d_x} \left(s_{j|j+1,i}^{y,\ell} - \frac{e^{s_{j|j+1,i}^{y,\ell}}}{\sigma_{m|m+1}^2}\right),
$$

- We perform the optimization using SGD.
- Crucially, we normalize the gradients to ensure the stability of the training procedure.
- In practice, we only perform 2 or 3 SGD steps.

Tamed ULA steps

We now turn to the Langevin steps on $\hat{p}_{k_{\ell+1}}^{y,\ell}$.

As the marginals $(p_k)_{k=0}^n$ approximate the true marginals of the forward process initialized at the data distribution π , we may use

$$
s_k^{\theta}(x_k) = -(x_k - \sqrt{\alpha_k} \hat{x}_{0|k}^{\theta}(x_k))/(1 - \alpha_k),
$$

as a substitute for $\nabla_{x_k} \log p_k(x_k)$, following [Dhariwal and Nichol \(2021\)](#page-111-1).

We sample approximately from $\hat{p}_{k_{\ell+1}}^{y,\ell}$ by running M steps of the Tamed Unadjusted Langevin scheme [\(Brosse et al., 2019\)](#page-110-0)

$$
X_{j+1} = X_j + \gamma G^{y,\ell}_{\gamma}(X_j) + \sqrt{2\gamma} Z_j, \quad X_0 = X^{y}_{k_{\ell+1}}, \tag{1}
$$

where

$$
G_{\gamma}^{y,\ell}(x) := \frac{\nabla \log \hat{\beta}_{k_{\ell}|k_{\ell+1}}^{y,\ell}(x) + s_{k_{\ell+1}}^{\theta}(x)}{1 + \gamma \|\nabla \log \hat{\beta}_{k_{\ell}|k_{\ell+1}}^{y,\ell}(x) + s_{k_{\ell+1}}^{\theta}(x)\|},
$$

and set $X^{y,\ell}_{k_{\ell+1}}:=X_M.$

Given an approximate sample $X_{k_{\ell+1}}^y$ from $\hat{p}_{k_{\ell+1}}^y$,

- Run TULA starting from $X_{k_{\ell+1}}^y$ to obtain $X_{k_{\ell+1}}^{y,\ell}$ approximately distributed according $\hat{p}_{k_{\ell+1}}^{y,\ell}$.
- Sample $(X_j^{y,\ell})_{j=k_{\ell+1}}^{k_{\ell}}$: given $X_{j+1}^{y,\ell}$ with $j \in [\![k_{\ell}, k_{\ell+1}-1]\!]$,
	- Find variational approximation $r^{y,\ell}_{j|j+1}(\cdot|X^{y,\ell}_{j+1}).$
	- Draw $X_j^{y,\ell} \sim r_{j|j+1}^{y,\ell}(\cdot | X_{j+1}^{y,\ell}).$
- Repeat these steps.

Toy experiments

- \blacksquare Same 25 Gaussian mixture example.
- **DCPS**M refers to our algorithm with M Langevin steps at the beginning of each block.
- We use $L = 4$.
- We also estimate the empirical weights of each Gaussian mixture mode and compare with the ground truth.

Table 1: Results for the Gaussian mixture experiment. Results for the SW 60 / 63

Original image Obervation y

DCPS

DPS

Original image Obervation y

Original image Obervation y

61 / 63

Original image Obervation y

Original image Obervation y

61 / 63

Original image Obervation y

Original image Obervation y

Original image Obervation y

Original image Obervation y

DDRM

DCPS

DPS

Original image Obervation y

62 / 63

Original image Obervation y

DCPS

DPS

Original image Obervation y

DCPS

Original image Obervation y

DCPS

DPS

Original image Obervation y

Colorization experiments

Original image Obervation y

DCPS

DDRM

Thank you!

[References](#page-110-0)

- Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for boltzmann machines. Cognitive science, 9(1):147–169.
- Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A., and Akyildiz, O. D. (2023). Tweedie moment projected diffusions for inverse problems. arXiv preprint arXiv:2310.06721.
- Brosse, N., Durmus, A., Moulines, É., and Sabanis, S. (2019). The tamed unadjusted langevin algorithm. Stochastic Processes and their Applications, 129(10):3638–3663.
- Cappe, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov Models (Springer Series in Statistics). Springer-Verlag, Berlin, Heidelberg.

Bibliography ii

- Cérou, F., Del Moral, P., Furon, T., and Guyader, A. (2012). Sequential Monte Carlo for rare event estimation. Statistics and computing, 22(3):795–808.
- Chopin, N., Papaspiliopoulos, O., et al. (2020). An introduction to sequential Monte Carlo, volume 4. Springer.
- Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023). Diffusion posterior sampling for general noisy inverse problems. In The Eleventh International Conference on Learning Representations.
- Del Moral, P. (2004). Feynman-kac formulae. In Feynman-Kac Formulae, pages 47–93. Springer.
- Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34:8780–8794.
- Dockhorn, T., Vahdat, A., and Kreis, K. (2022). Score-based generative modeling with critically-damped langevin diffusion. In International Conference on Learning Representations (ICLR).
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680.
- Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/ non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140(2):107–113.
- Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851.
- Kawar, B., Elad, M., Ermon, S., and Song, J. (2022). Denoising diffusion restoration models. Advances in Neural Information Processing Systems, 35:23593–23606.
- Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471.
- Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In International conference on machine learning, pages 1530–1538. PMLR.

Bibliography v

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine learning, pages 2256–2265. PMLR.

- Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit models. In International Conference on Learning Representations.
- Song, J., Vahdat, A., Mardani, M., and Kautz, J. (2023). Pseudoinverse-guided diffusion models for inverse problems. In International Conference on Learning Representations.
- Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021b). Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations.
- Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R., and Jaakkola, T. S. (2023). Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. In The Eleventh International Conference on Learning Representations.
- Wu, L., Trippe, B. L., Naesseth, C. A., Cunningham, J. P., and Blei, D. (2023). Practical and asymptotically exact conditional sampling in diffusion models. In Thirty-seventh Conference on Neural Information Processing Systems.
- Zhang, G., Ji, J., Zhang, Y., Yu, M., Jaakkola, T., and Chang, S. (2023). Towards coherent image inpainting using denoising diffusion implicit models. arXiv preprint arXiv:2304.03322.