
Bayesian Inverse Problem with Denoising Diffusion

model priors

Yazid Janati El Idrissi, Eric Moulines

CMAP, Ecole polytechnique

joint work with Gabriel Cardoso (CMAP), Sylvain Le Corff (LPSM)

1 / 63

Introduction

Generative modeling

We have a dataset DN := {X1, . . . , XN}, where Xi ∈ Rdx .

Figure 1: Samples from the ImageNet dataset.

Modeling assumption

(X1, . . . , XN) are samples from some unknown distribution πdata

2 / 63

Generative modeling

We have a dataset DN := {X1, . . . , XN}, where Xi ∈ Rdx .

Figure 1: Samples from the ImageNet dataset.

Modeling assumption

(X1, . . . , XN) are samples from some unknown distribution πdata

2 / 63

Generative modeling

1 Approximate πdata with a parametric model.

Figure 2: data distribution.

3 / 63

Bayesian inverse problems

2 Sample reconstructions from the posterior distribution.

Figure 3: Reconstruction problems. Figure adapted from Lugmayr et al.

(2022).

4 / 63

Generative modeling

1 Approximate πdata with a parametric model pθ.

1 Choose a suitable parametric form for pθ.

2 Train pθ to approximate π using the samples (X1, . . . , XN) ∼ π.

L(θ) =
N∑
i=1

− log pθ(Xi) .

⇝ Minimize L(θ) → find optimal parameter θ∗.

Ackley et al. (1985); Kingma and Welling (2013); Goodfellow et al. (2014); Rezende

and Mohamed (2015); Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.

(2021b)

5 / 63

Generative modeling

1 Approximate πdata with a parametric model pθ.

1 Choose a suitable parametric form for pθ.

2 Train pθ to approximate π using the samples (X1, . . . , XN) ∼ π.

L(θ) =
N∑
i=1

− log pθ(Xi) .

⇝ Minimize L(θ) → find optimal parameter θ∗.

Ackley et al. (1985); Kingma and Welling (2013); Goodfellow et al. (2014); Rezende

and Mohamed (2015); Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.

(2021b)

5 / 63

Generative modeling

1 Approximate πdata with a parametric model pθ.

1 Choose a suitable parametric form for pθ.

2 Train pθ to approximate π using the samples (X1, . . . , XN) ∼ π.

L(θ) =
N∑
i=1

− log pθ(Xi) .

⇝ Minimize L(θ) → find optimal parameter θ∗.

Ackley et al. (1985); Kingma and Welling (2013); Goodfellow et al. (2014); Rezende

and Mohamed (2015); Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.

(2021b)

5 / 63

Posterior sampling

2 Perform controlled generation using pθ∗ .

⇝ Target distribution: weight pθ∗ with a function x 7→ g(x)

ϕ(dx) =
g(x)pθ∗(dx)∫
g(z)pθ∗(dz)

,

⇝ Posterior sampling: g(x) = p(y|x).

⇝ Reinforcement learning: g is a reward function.

6 / 63

Posterior sampling

2 Perform controlled generation using pθ∗ .

⇝ Target distribution: weight pθ∗ with a function x 7→ g(x)

ϕ(dx) =
g(x)pθ∗(dx)∫
g(z)pθ∗(dz)

,

⇝ Posterior sampling: g(x) = p(y|x).

⇝ Reinforcement learning: g is a reward function.

6 / 63

Denoising diffusion models

Introduction

A denoising diffusion probabilistic model (DDPM) makes use of two

Markov chains:

1 a forward chain (process) that perturbs data to noise,

2 a reverse chain (process) that converts noise back to data.

The forward chain is typically hand-designed with the goal to

transform the data distribution πdata into a (simple) reference

distribution πref (e.g., standard Gaussian)

The backward chain reverses the forward chain by learning transition

kernels.

New data points are generated by first sampling a random vector

from the reference distribution, followed by ancestral sampling

through the backward Markov chain.

7 / 63

Forward process

Given a data distribution x0 ∼ πdata(dx0) = q0(dx0), the forward

Markov chain generates a sequence of random variables x1, x2 . . . xT

with transition kernel qt|t−1 (dxt | xt−1).

The joint distribution of x1, x2 . . . xT conditioned on x0, denoted as

q0:T (d(x1, . . . , xT) | x0), may be written as

q0:T (d(x1, . . . , xT) | x0) =

T∏
t=1

qt|t−1 (dxt | xt−1) .

In DDPMs, we handcraft the transition kernel qt|t−1 (dxt | xt−1) to

incrementally transform the data distribution q0 (dx0) into a

tractable reference distribution.

Typical design: Gaussian perturbation

qt|t−1 (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
,

where βt ∈ (0, 1) is a hyperparameter chosen ahead of model

training.

8 / 63

Forward process

Gaussian transition kernel allows us to obtain the analytical form of

qt|0 (xt | x0) for all t ∈ {0, 1, · · · , T}. Setting αt := 1− βt and

ᾱt :=
∏t

s=0 αs, we have

qt|0 (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
.

Given x0, we can easily obtain a sample of xt by sampling a

Gaussian vector ϵt ∼ N (0, I) and applying the transformation

xt =
√
ᾱtx0 +

√
1− ᾱtϵt.

When ᾱT ≈ 0, xT is almost Gaussian in distribution,

qT (xT) :=

∫
qT |0 (xT | x0) q0 (x0) dx0 ≈ N (xT ;0, I) .

9 / 63

Backward process

For generating new data samples, DDPMs start by sampling the

reference distribution and then gradually remove noise by running a

learnable Markov chain backward in time.

The reverse Markov chain is parameterized by a reference

distribution πref (xT) = N (xT ;0, I) and a learnable transition kernel

pθt−1|t (xt−1 | xt) = N
(
xt−1;µ

θ
t (xt) ,Σ

θ
t (xt)

)
where θ denotes model parameters, and the mean µθ

t (xt) and

variance Σθ
t (xt) are parameterized by deep neural networks.

Data generation

Sample xT ∼ πref (·),

iteratively sample xt−1 ∼ pθt−1|t (· | xt) until t = 1.

10 / 63

Diffusion model principles

Figure 4: Diffusion models smoothly perturb data by adding noise, then

reverse this process to generate new data from noise.

11 / 63

Variational Inference

Objective: Adjust the parameter θ so that the joint distribution of

the reverse Markov chain

pθ0:T (x0, x1, · · · , xT) = pref(xT)

T∏
t=1

pθt−1|t(xt−1 | xt)

matches

q0:T (x0, x1, · · · , xT) := q0 (x0)

T∏
t=1

qt|t−1 (xt | xt−1) .

Training is performed by maximizing a variational bound:

Eq0

[
− log pθ (x0)

]
≤ Eq0:T

[
− log

pθ0:T (x0:T)

q1:T |0 (x1:T | x0)

]

= Eq0:T

− log pT (xT)−
∑
t≥1

log
pθt−1|t (xt−1 | xt)

qt|t−1 (xt|xt−1)

 =: Lθ

12 / 63

Variational inference with variance reduction

Lθ might be rewritten using the backward representation of the

forward noising process

q1:T |0(x1:T |x0) =

T∏
t=1

qt|t−1(xt|xt−1)

= qT |0(xT |x0)

T∏
t=2

qt−1|t(xt−1|xt, x0)

With this backward decomposition, Lθ writes

Lθ = Eq0:T

[
− log

pT (xT)

qT |0 (xT | x0)
−

T∑
t=2

log
pθt−1|t (xt−1 | xt)

qt−1|t,0 (xt−1 | xt, x0)

− log pθ0|1 (x0 | x1)
]

= Eq0:T

[
DKL

(
qT |0 (· | x0) ∥pT (·)

)
+

T∑
t=2

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
− log pθ0|1 (x0 | x1)

]
13 / 63

Variational inference with variance reduction

forward posteriors are tractable when conditioned on x0 :

qt−1|t,0 (xt−1 | xt, x0) = N
(
xt−1; µ̃t (xt, x0) , β̃tI

)
where µ̃t (xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

and β̃t :=
1− ᾱt−1

1− ᾱt
βt

KL divergences are comparisons between Gaussian distributions with

closed form expressions: taking Σθ
t (xt) = β̃tI,

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
=

1

2β̃t

∥µ̃t(xt, x0)−µθ
t (xt)∥2 .

14 / 63

Variational inference with variance reduction

Setting

µθ
t (xt) = µ̃t(xt, x̂

θ
0|t(xt)),

we get

DKL

(
qt−1|t,0 (· | xt, x0) ∥pθt−1|t (· | xt)

)
= wt∥x0 − x̂θ

0|t(xt)∥2 .

with wt = ᾱt−1βt/(1− ᾱt−1)(1− ᾱt).

Hence, criterion Lθ rewrites

Lθ =

T∑
t=2

wtEq0⊗N (0,I)[∥x0 − x̂θ
0|t(
√
ᾱtx0 +

√
1− ᾱtϵ)∥2]

which amount to compute x̂θ
0|t(xt) as a predictor of the initial state

x0 from the current state xt.

This criterion is the denoising score matching.

15 / 63

Noise prediction

Using that xt =
√
ᾱtx0 +

√
1− ᾱtϵt, we have

x0 =
1√
ᾱt

(xt −
√
1− ᾱtϵt)

Choosing x̂θ
0|t(xt) = (1/

√
ᾱt)(xt −

√
1− ᾱtϵ̂

θ
0|t(xt)), the criterion

Lθ may be equivalently expressed as

Lθ =

T∑
t=2

w̃tEq0⊗N (0,I)[∥ϵ− ϵ̂θ0|t(
√
ᾱtx0 +

√
1− ᾱtϵ)∥2]

where

w̃t =
βt

αt(1− ᾱt−1)

16 / 63

A continuous-time perspective

Ornstein-Uhlenbeck Noising process

Consider a diffusion process {Xt}Tt=0 that starts from the data

distribution q0(dx) ≡ πdata (dx) at time t = 0. The notation qt(dx)

refers to the marginal distribution of the diffusion at time 0 ≤ t ≤ T .

Assume furthermore that at time t = T , the marginal distribution is

(very close to) a reference distribution qT (dx) = πref (dx) that is

straightforward to sample from, e.g. N (0, I).

This diffusion process is the noising process. It is often chosen as an

Ornstein-Uhlenbeck (OU) diffusion,

dXt = −
1

2
Xtdt+ dWt

17 / 63

OU noising process

OU diffusion is reversible w.r.t. πref = N (0, I): the conditional

distribution of Xt+s | Xt = xt is N (αsxt, σ
2
sI), with

αs =
√

1− σ2
s σ2

s = 1− e−s

Denote

F (s, x, y) ∝ exp

{
− (y − αsx)

2

2σ2
s

}
.

the forward transition from x to y in ” s ” amount of time.

18 / 63

Reverse diffusion I (informal)

the DDPM strategy consists in sampling from the Gaussian

reference measure πref at time t = T and simulate the OU process

backward in time.

In other words, one would like to simulate from the reverse process
←−
X t defined as

←−
X s = XT−s

The reverse process is distributed as
←−
X 0 ∼ πref at time t = 0 and,

crucially, we have that
←−
XT ∼ πdata .

The reverse diffusion follows the dynamics (Hausmann, Pardoux,

1986; Millet, Nualart, Sanz, 1989)

d
←−
X t = +

1

2

←−
X tdt+∇ log qT−t

(←−
X t

)
dt+ dBt

where B is another Wiener process [the notation B emphasizes that

there is no link between this Wiener process and the one used to

simulate the forward process].
19 / 63

Reverse diffusion II (informal)

To simulate the reverse diffusion, one needs to be able to estimate

the score ∇ log qT−t(x).

In practice, the score is unknown and need to be approximated

sθt (x) ≈ ∇x log qt(x)

which is often parameterized by a neural network.

Since

log qt(x) = log

∫
F (t, x0, x)πdata (dx0)

the analytical expression of F (t, x0, x) gives that (Tweedie formula)

∇x log qt(x) = −
x− αtx̂0(x, t)

σ2
t

where x̂0(x, t) = E [X0|Xt = x] is a denoising estimate of x0 given

a noisy estimate Xt = x at time t

20 / 63

Estimation of the score

To estimate the score, one only needs to train a denoising function

x̂θ
0|t(x).

It is a simple regression problem: take pairs (X0, Xt) that can be

generated as

X0 ∼ πdata and Xt = αtX0 + σtZt

with Zt ∼ N (0, I) and minimize the Mean Squared Error (MSE)

loss, i.e.

Eq0,t

[∥∥∥X0 − x̂θ
0|t(Xt)

∥∥∥2]
with stochastic gradient descent or any other stochastic optimization

procedure.

The score is then defined as

sθt (x) = −
x− αtx̂

θ
t (x)

σ2
t

21 / 63

Time reversal formula for a diffusion process

General time reversal formulas for diffusion processes are well known

since the 80 ’s. Consider a diffusion process Y in Rn satisfying

dYt = bt (Yt) dt+ σt (Yt) dBt, 0 ≤ t ≤ T,

with B a Brownian motion, b a drift vector field and σ a matrix field

associated to the diffusion field a := σσ⊤

Assuming that the law of Yt is absolutely continuous at each time t,

under appropriate assumptions, the time-reversed process Y ∗ is again a

diffusion process with diffusion matrix field a∗t = aT−t and drift field

b∗t (y) = −bT−t(y) +∇ · (µT−taT−t) (y)/µT−t(y),

where µt is the density of the law of Yt with respect to Lebesgue measure.

This is not a straightforward result because a reversed semimartingale

might not be a semimartingale !.

22 / 63

Time reversal formula for a diffusion process

For the identity

b∗t (y) = −bT−t(y) +∇ · (µT−taT−t) (y)/µT−t(y),

to hold, it is assumed in that b is locally Lipschitz and that either a is

bounded away from zero or that the derivative ∇a in the sense of

distribution is controlled locally.

Haussmann and Pardoux take a PDE approach; Millet, Nualart and Sanz

rely on stochastic calculus of variations.

The existence of an absolutely continuous density follows from a

Hörmander type condition (PDE formulation in Haussman et al. and

consequence of Malliavin calculus in Millet et al.).

23 / 63

Time reversal formula for a diffusion process

Föllmer’s approach significantly departs from these strategies. Under the

simplifying hypothesis that a is the identity matrix, the law P of Y has a

finite entropy

H(P | R) <∞

with respect to the law R of a Brownian motion with some given initial

probability distribution.

In particular, the drift field b of P satisfies
∫
[0,T]×Rn |bt(y)|2 µt(y)dtdy <

∞ and might be singular, rather than locally Lipschitz.

As a consequence of this finite entropy assumption, Föllmer proves the

time reversal formula

b∗t (y) = −bT−t(y) +∇ logµT−t(y)

(recall a = Id) where the derivative is in the sense of distributions,

without invoking any already known result about the regularity of µ.

24 / 63

Summary

Figure 5: From Dockhorn et al. (2022)

25 / 63

Feyman-Kac representation

Context

Bayesian linear inverse problem:

Y = AX + σyZ, where Z ∼ N (0dx
, Idx

), X ∼ p0, σy ≥ 0 .

Objective: Sample the distribution of X given a realisation y of Y .

Posterior

samples

Sample from p0

AX+σyZ−−−−−−→

Observation y

0 50 100 150 200 250

0

50

100

150

200

250

−→ 0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

26 / 63

Context

Bayesian linear inverse problem:

Y = AX + σyZ, where Z ∼ N (0dx
, Idx

), X ∼ p0, σy ≥ 0 .

Objective: Sample the distribution of X given a realisation y of Y .

Posterior

samples

Sample from p0

AX+σyZ−−−−−−→

Observation y

0 50 100 150 200 250

0

50

100

150

200

250

−→ 0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

26 / 63

Context

Bayesian linear inverse problem:

Y = AX + σyZ, where Z ∼ N (0dx
, Idx

), X ∼ p0, σy ≥ 0 .

Objective: Sample the distribution of X given a realisation y of Y .

Posterior

samples

Sample from p0

AX+σyZ−−−−−−→

Observation y

0 50 100 150 200 250

0

50

100

150

200

250

−→ 0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

26 / 63

Feynman-Kac representation

We focus on the specific case where the prior p0 is the marginal w.r.t. x0

of Denoising Diffusion Model. The posterior is

py0(dx0) =
1

Zy

∫
gy0 (x0)

n−1∏
k=0

pk|k+1(dxk|xk+1) pn(dxn) .

The posterior can be interpreted as the marginal of a (time-reversed)

Feynman–Kac (FK) model with non-trivial potential only at k = 0 !

In this work, we twist, without modifying the law of the FK model,

the backward transitions pk|k+1 by potentials depending on the

observation y; see e.g. for a similar idea for rare event simulation

(see, e.g., Cérou et al., 2012).

27 / 63

”Forward” smoothing decomposition

Define, for all k ∈ J0, nK, the backward functions

βy
0|k(xk) :=

∫
gy0 (x0) p0|k(dx0|xk)

The backward functions satisfy the recursion:

βy
0|k+1(xk+1) =

∫
βy
0|k(xk) pk|k+1(dxk|xk+1) .

Define the forward smoothing kernels (FSK) for k ∈ J0, n− 1K

pyk|k+1(dxk|xk+1) :=
βy
0|k(xk)

βy
0|k+1(xk+1)

pk|k+1(dxk|xk+1) ,

(= Law(Xk | Y = y,Xk+1 = xk+1)) .

28 / 63

“Forward” smoothing decomposition

The posterior distribution can be written in terms of forward smoothing

kernels

py0(dx0) =

∫
pyn(dxn)

n−1∏
k=0

pyk|k+1(dxk|xk+1) .

where

pyn(dxn) =
βy
0|n(xn)pn(dxn)

Zy

Most of the recent works to sample from py0 use the forward

smoothing decomposition with different approximation of the

intractable forward smoothing kernels. Chung et al. (2023); Song

et al. (2023); Zhang et al. (2023); Boys et al. (2023); Trippe et al.

(2023); Wu et al. (2023).

29 / 63

DDPM approximation

The DDPM is based on the assumption the forward smoothing

decomposition is a good approximation the time reversal of the forward

Markov chain initialized at py0, i.e.

py0(dx0)

n∏
k=1

qk|k−1(dxk|xk−1) ≈ pyn(dxn)

n−1∏
k=0

pyk|k+1(dxk|xk+1) ,

which suggests the following approximation

pyk|k+1(dxk|xk+1) ≈
∫

qk|0,k+1(dxk|x0, xk+1)p
y
0|k+1(dx0|xk+1)

where

py0|k+1(dx0|xk+1) ∝ py0(dx0)qk+1|0(xk+1|x0)

30 / 63

DDPM approximation

(Ho et al., 2020; Song et al., 2021a) suggested to use the DDPM

approximation of the backward kernel is :

pyk|k+1(dxk|xk+1) = qk|0,k+1(dxk|E
[
X0|Xk+1 = xk+1, Y = y], xk+1)

where

E[X0|Xk+1, Y = y] :=

∫
x0 p

y
0|k+1(dx0|Xk+1) .

31 / 63

Conditional score

By Tweedie’s formula,

E
[
X0|Xk, Y = y] =

Xk + (1− αk)∇xk
log pyk(Xk)√

αk
,

where

pyk(xk) :=

∫
py0(dx0)qk|0(xk|x0)

∝
∫

gy0 (x0)p0(dx0)qk|0(xk|x0)

∝
∫

gy0 (x0)p0|k(dx0|xk) pk(xk) .

Hence,

∇xk
log pyk(xk) = ∇xk

log βy
0|k(xk) +∇xk

log pk(xk) .

32 / 63

Diffusion posterior sampling I

∇xk
log pyk(xk) = ∇xk

log βy
0|k(xk) +∇xk

log pk(xk) ,

A pre-trained score network (for ∇xk
log pk(xk)) is available.

But the gradient of the log backward function is intractable in

practice.

Using the pre-trained approximation x̂0|k(Xk) of E[X0|Xk], Chung et al.

(2023) proposed the following approximation,

∇xk
log βy

0|k(xk) ≈ ∇xk
log gy0 (x̂0|k(xk)) .

They then sample approximately from the FSK in the following way;

given Xy
k

First sample Xk−1 ∼ pk−1|k(·|X
y
k)

Then set Xy
k−1 = Xk−1 + γk∇xk

log gy0 (x̂0|k(X
y
k))

γk is in practice a highly sensitive parameter, crucial for good

performance. 33 / 63

Diffusion posterior sampling II

The DPS approximation by Chung et al. (2023) boils down to

assuming that p0|k(dx0|xk) ≈ δx̂
0|k(xk)(dx0).

This is a very crude approximation that becomes accurate only as

k → 0.

Song et al. (2023) consider the sample sampling scheme but propose

instead the following Gaussian approximation

p0|k(dx0|xk) ≈ N (dx0; x̂0|k(xk), r
2
k Idx

), r2k =
σ2
k

1 + σ2
k

,

in which case, we obtain the following approximation

βy
0|k(xk) ≈ N (y;Ax̂0|k(xk), r

2
kAA⊺ + σ2

y Idy) .

The Gaussian approximation above becomes exact in the case where

p0 = N (0dx
, Idx

) and variance exploding is used.

Still, this is not a realistic approximation in the more general case.
34 / 63

Tweedie Moment Projected diffusion

Boys et al. (2023) instead consider a Gaussian approximation p̂0|k(·|xk)

of p0|k(·|xk):

p̂0|k(·|xk) := argmin
µ,Σ

KL(p0|k(·|xk) ∥ N (µ,Σ)) .

and

p̂0|k(·|xk) = N
(
E[X0|Xk = xk],Cov(X0|Xk = xk)

)
,

where the expectation and covariance are under p0|k(·|xk). Under the

same assumption as previously (backward=forward), it can be shown that

Cov(X0|Xk) =
1− αk√

αk
∇xk

E[X0|Xk]

which may be approximated by plugging in x̂0|k(Xk) to approximate

∇xk
E[X0|Xk].

The resulting covariance approximation is not symmetric nor positive

definite.

Extremely expensive to compute. In practice further crude

approximations are introduced.
35 / 63

Monte Carlo guided diffusion

General Feynman–Kac model

Introduce intermediate positive potentials (gyk)
n
k=0, each being a function

on Rdx , and write

py0(dx0) =
1

Zy

∫
gyn(xn) pn(dxn)

×
n−1∏
k=0

gyk(xk)

gyk+1(xk+1)
pk|k+1(dxk|xk+1) .

Because the gyn(xn)
∏n−1

k=0
gy
k(xk)

gy
k+1(xk+1)

= gy0 (x0), the FK is not

modified - the potentials are used to render the sampling easier.

This allows the posterior of interest to be expressed as the time-zero

marginal of a Feynman-Kac model with

initial law pn,

Markov transition kernels (pk|k+1)
n−1
k=0

Potentials gyn and (xk, xk+1) 7→ gyk(xk)/g
y
k+1(xk+1).

36 / 63

Posterior sampling proposal

Alternatively, the previous decomposition defines a sequence of

distributions

pyk(dxk) ∝ gyk(xk)pk(dxk) , k ∈ J0, nK ,

where the posterior of interest is the terminal distribution at k = 0.

If we have a particle approximation of pyk+1 then we can evolve it

into a particle approximation of pyk ⇝ we recursively build an

empirical approximation of py0.

The choice of potentials {gyk}k∈J0,nK is crucial; we need to ensure

that pyk is close enough to pyk+1 so that we can bridge the

intermediate distributions efficiently.

37 / 63

Posterior sampling proposal: recursion

Consider the following particle approximation of pyk+1

pN,y
k+1 =

1

N

N∑
i=1

δξik+1
,

Recall that pk(dxk) =
∫
pk|k+1(dxk|xk+1)pk+1(dxk+1),

pyk(dxk) =

∫ gy
k(xk)

gy
k+1(xk+1)

pk|k+1(dxk|xk+1)p
y
k+1(dxk+1)∫ gy

k(zk)

gy
k+1(zk+1)

pk|k+1(dzk|zk+1)p
y
k+1(dzk+1)

,

and hence

pyk(dxk) ∝
∫ ∫

gyk(zk)pk(dzk|xk+1)

gyk+1(xk+1)︸ ︷︷ ︸
:=ω̃k(xk+1)

pyk(dxk|xk+1)p
y
k+1(dxk+1) ,

where pyk(dxk|xk+1) ∝ gyk(xk)pk|k+1(dxk|xk+1) → available in closed

form if we use a Gaussian potential with mean linear in xk.

38 / 63

Posterior sampling proposal: recursion

Consider the following particle approximation of pyk+1

pN,y
k+1 =

1

N

N∑
i=1

δξik+1
,

Recall that pk(dxk) =
∫
pk|k+1(dxk|xk+1)pk+1(dxk+1),

pyk(dxk) =

∫ gy
k(xk)

gy
k+1(xk+1)

pk|k+1(dxk|xk+1)p
y
k+1(dxk+1)∫ gy

k(zk)

gy
k+1(zk+1)

pk|k+1(dzk|zk+1)p
y
k+1(dzk+1)

,

and hence

pyk(dxk) ∝
∫ ∫

gyk(zk)pk(dzk|xk+1)

gyk+1(xk+1)︸ ︷︷ ︸
:=ω̃k(xk+1)

pyk(dxk|xk+1)p
y
k+1(dxk+1) ,

where pyk(dxk|xk+1) ∝ gyk(xk)pk|k+1(dxk|xk+1) → available in closed

form if we use a Gaussian potential with mean linear in xk.

38 / 63

Posterior sampling proposal: recursion

Consider the following particle approximation of pyk+1

pN,y
k+1 =

1

N

N∑
i=1

δξik+1
,

Recall that pk(dxk) =
∫
pk|k+1(dxk|xk+1)pk+1(dxk+1),

pyk(dxk) =

∫ gy
k(xk)

gy
k+1(xk+1)

pk|k+1(dxk|xk+1)p
y
k+1(dxk+1)∫ gy

k(zk)

gy
k+1(zk+1)

pk|k+1(dzk|zk+1)p
y
k+1(dzk+1)

,

and hence

pyk(dxk) ∝
∫ ∫

gyk(zk)pk(dzk|xk+1)

gyk+1(xk+1)︸ ︷︷ ︸
:=ω̃k(xk+1)

pyk(dxk|xk+1)p
y
k+1(dxk+1) ,

where pyk(dxk|xk+1) ∝ gyk(xk)pk|k+1(dxk|xk+1) → available in closed

form if we use a Gaussian potential with mean linear in xk.
38 / 63

Posterior sampling proposal: SMC approximation

pyk(dxk) =

∫
pyk(dxk|xk+1)

ω̃k(xk+1)p
y
k+1(dxk+1)∫

ω̃k(zt+1)p
y
k+1(dzk+1)

,

Assume pN,y
k = 1

N

∑N
i=1 δξik+1

is a particle approximation of pN,y
k+1.

⇝ Weight:

pN,y
k (·) ≈

N∑
i=1

ω̃k(ξ
i
k+1)∑N

j=1 ω̃k(ξ
j
k+1)

pyk(·|ξ
i
k+1) .

⇝ Resample: Draw A1:N
k+1

iid∼ Categorical({ωj
k}Nj=1) where ωj

k ∝ ω̃t(ξ
j
k+1).

⇝ Mutate: Sample ξik ∼ pyk(·|ξ
Ai

k+1

k+1) for i ∈ [1 : N],

pN,y
k =

1

N

N∑
i=1

δξik .

Gordon et al. (1993); Del Moral (2004); Cappe et al. (2005); Chopin et al. (2020)

39 / 63

Potentials: heuristic

For simplicity (and only in this slide) let p0(y) be the posterior of the

inverse problem

Y = X0, X0 ∼ p0 ,

The marginals of the forward process initialized at py0 are

Xk
L
=
√
ᾱkX0 +

√
1− ᾱkZ, X0 ∼ py0, Z ∼ N (0dx

, Idx
) ,

and so

Xk
L
=
√
ᾱky +

√
1− ᾱk Z , Z ∼ N (0dy

, Idy
) .

This suggests that one relevant choice of potentials is

gyk(xk) = N (
√
αky;xk, (1− αk)Idy

) .

40 / 63

Choice of potentials

More generally, we let the variance be a free parameter σ2
y,k.

Our proposal in the general case is

pyk(dxk) ∝ gyk(xk)pk(dxk) , gyk(xk) := N (
√
ᾱky;Axk, σ

2
y,kIdy)

This particular choice of potential allows us to compute in closed

form the auxiliary transition kernel ∝ gyk(xk)pk|k+1(dxk|xk+1) we

use for our particle approximations.

41 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py450

Figure 6: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py450

Figure 6: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py150

Figure 7: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py100

Figure 8: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py80

Figure 9: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py70

Figure 10: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py50

Figure 11: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py40

Figure 12: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py20

Figure 13: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py15

Figure 14: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py2

Figure 15: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Illustration

⇝ {pyk}nk=1 is available in closed form for the Gaussian mixture example.

p0 and py0 Posterior py0

Figure 16: Left plot: samples from the prior p0 and posterior py0 . Right plot:

samples from the posterior proposals pyk for time steps ranging from n := 500

to 0.

42 / 63

Toy examples

⇝ 25 Gaussian mixture example with means

µi,j = (8i, 8j, . . . , 8i, 8j), (i, j) ∈ {−2, . . . , 2}

with unit convariance matrices. We randomly draw the weights of

the mixture and the forward operator A and σy for the inverse

problem ⇝ ∇ log pk is available in closed form.

⇝ 20 component mixture of translated and rotated Funnel

distributions. We learn the score and consider the ground truth to

be samples from parallel NUTS with very long chains.

43 / 63

Toy examples

Figure 17: Sliced Wasserstein between samples of the target posterior and the

empirical measure returned by each method. Top: Gaussian mixture. Bottom:

Funnel mixture. We show the 95% CLT interval over 20 seeds.

DPS: Chung et al. (2023), DDRM: Kawar et al. (2022)

44 / 63

Toy examples

45 / 63

Imaging experiments

⇝ Diffusion models learned on different datasets of image sizes varying

from (64, 64, 3) to (256, 256, 3).

⇝ We run parallel SMCs with N = 64 particles.

46 / 63

Super-resolution example

47 / 63

Deblurring example

47 / 63

Inpainting example

48 / 63

Divide-and-conquer posterior

sampling

Sequence of distributions

Let (kℓ)
L
ℓ=0 be an increasing sequence in J0, nK with k0 = 0 and kL = n.

Consider

pykℓ
(dxkℓ

) ∝ gykℓ
(xkℓ

)pkℓ
(dxℓ) ,

with

gykℓ
(xkℓ

) = N (
√
αkℓ

y;Axkℓ
, σ2

y,kℓ
Idy) .

L is typically much smaller than n.

This is the same sequence of distribution as in our SMC approach

but now we only consider a small number L of intermediate

distributions.

Our goal is to recursively sample from each one of them without

having to evolve N particles in parallel.

We also want to solve the “image inconsistency” problem observed

in our SMC method.
49 / 63

Recursion

Since
pkℓ

(dxkℓ
) =

∫ { kℓ+1−1∏
j=kℓ

pj|j+1(dxj |xj+1)

}
pkℓ+1

(dxkℓ+1
) ,

we can write pykℓ
in terms of forward smoothing kernels, i.e.

pykℓ
(dxkℓ

) =

∫ { kℓ+1−1∏
j=kℓ

py,ℓj|j+1(dxj |xj+1)

}
py,ℓkℓ+1

(dxkℓ+1
)

where

py,ℓkℓ+1
(dxkℓ+1

) ∝ βy,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) ,

py,ℓj|j+1(dxj |xj+1) ∝ βy,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

and for all j ∈ Jkℓ, kℓ+1K

βy,ℓ
kℓ|j(xj) :=

∫
gykℓ

(xkℓ
)pkℓ|j(dxkℓ

|xj).

50 / 63

DCPS summary

py
τ3

py,2
τ3

py,1
τ2

py
τ2

py,0
τ1

py
τ1

py
0

(L)

{py,1
t|t+1}

τ1
t=τ2−1 {py,0

t|t+1}
τ0
t=τ1−1

{py,2
t|t+1}

τ2
t=τ3−1

(L)
(L)

Figure 18: Illustration of idealized DCPS.

Starting at an approximate sample Xy
kℓ+1

from pykℓ+1

Use ULA initialized at Xy
kℓ+1

to obtain an approximate sample from

Xy,ℓ
kℓ+1

.

Starting from Xy,ℓ
kℓ+1

, simulate a Markov chain with transition kernels

(py,ℓj|j+1)
kℓ

j=kℓ+1−1

Repeat until the posterior of interest is reached.

51 / 63

Backward function approximation

The first source of intractability are the backward functions βy,ℓ
kℓ|j .

This is the same problem as before, however note that now they are

expressed as an integral under pkℓ|j(·|xj) with j ∈ Jkℓ + 1, kℓ+1K
instead of p0|j(·|xj) for j ∈ J0, nK.

This is more convenient since we expect Gaussian approximations of

pkℓ|j(·|xj) to be more accurate than those of p0|j(·|xj).

52 / 63

Backward kernel approximation

Assume again that forward=backward. Then for j ∈ Jkℓ + 1, kℓ+1K,

pkℓ|j(dxkℓ
|xj) =

∫
qkℓ|0,j(dxkℓ

|x0, xj)p0|j(dx0|xj) ,

Let p̂0|j(·|xj) be an approximation of p0|j(·|xj) and define

p̂kℓ|j(dxkℓ
|xj) =

∫
qkℓ|0,j(dxkℓ

|x0, xj)p̂0|j(dx0|xj)

For DPS (Chung et al., 2023), p̂0|j(dx0|xj) = δx̂θ
0|j(xj)(dx0).

For Song et al. (2023), p̂0|j(dx0|xj) = N (dx0; x̂
θ
0|j(xj), r

2
j Idy

).

In both cases, p̂kℓ|j(·|xj) is computable in closed form. We write

p̂kℓ|j(dxkℓ
|xj) = N (dxkℓ

;µkℓ|j(xj), σ
2
kℓ|j Idx

) .

where both the mean and variance depend on the approximation

used.
53 / 63

Backward kernel approximation

Proposition
Assume forward=backward. For all ℓ ∈ J0, LK, j ∈ Jkℓ + 1, kℓ+1K,

W2(p̂kℓ|j(·|xj), pkℓ|j(·|xj)) ≤
√
αkℓ

(1− αj/αkℓ
)

1− αj
W2(p̂0|j(·|xj), p0|j(·|xj)) .

where
√
αkℓ

(1−αj/αkℓ
)

1−αj
< 1 and goes to 0 as j → kℓ.

We improve upon the previous approximations by performing

Gaussian approximations on intervals Jkℓ, kℓ+1K of moderate size.

Our approximation of the backward function is then

βy,ℓ
kℓ|j(xj) ≈ β̂y,ℓ

kℓ|j(xj) :=

∫
gykℓ

(xkℓ
)p̂kℓ|j(dxkℓ

|xj)

= N (
√
αkℓ

y;Aµkℓ|j(xj), σ
2
kℓ|jAA⊺ + σ2

y,ℓIdy
) .

54 / 63

FSK approximation

Recall that the quantities of interest are

py,ℓj|j+1(dxj |xj+1) ∝ βy,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

py,ℓkℓ+1
(dxkℓ+1

) ∝ βy,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) .

Given the previous approximation of the backward function, we replace

them instead with

p̂y,ℓj|j+1(dxj |xj+1) ∝ β̂y,ℓ
kℓ|j(xj) pj|j+1(dxj |xj+1) ,

p̂y,ℓkℓ+1
(dxkℓ+1

) ∝ β̂y,ℓ
kℓ|kℓ+1

(xkℓ+1
) pkℓ+1

(dxkℓ+1
) ,

Still, while now we can evaluate the density p̂y,ℓj|j+1(·|xj+1) we still

cannot sample from it.

We can approximately sample from p̂y,ℓkℓ+1
using ULA.

55 / 63

Variational approximation I

For a fixed xj+1 we seek a mean-field Gaussian variational approximation

of p̂y,ℓj|j+1(·|xj+1) by solving

argmin
ry,ℓ
j|j+1

(·|xj+1)∈GD

KL(ry,ℓj|j+1(·|xj+1) ∥ p̂y,ℓj|j+1(·|xj+1)) ,

where GD := {N (µ,diag(σ)) : µ ∈ Rdx , σ ∈ Rdx
>0}.

We only learn vectors (µ, σ) that depend on the value of Xy,ℓ
j+1 and

do not seek to generalize as this incurs problem dependent, heavy

training.

56 / 63

Variational approximation II

Letting ry,ℓj|j+1(·|X
y,ℓ
j+1) = N (µy,ℓ

j|j+1,diag(e
sy,ℓ
j|j+1)) where sy,ℓj|j+1 ∈ Rdx ,

KL(ry,ℓj|j+1(·|X
y,ℓ
j+1) ∥ p̂

y,ℓ
j|j+1(·|X

y,ℓ
j+1))

= −E
[
log β̂y,ℓ

kℓ|j(µ
y,ℓ
j|j+1 + diag(e

sy,ℓ
j|j+1)Z)

]
+
∥µy,ℓ

j|j+1 − µj|j+1(X
y,ℓ
j+1)∥2

2σ2
m|m+1

− 1

2

dx∑
i=1

(
sy,ℓj|j+1,i −

e
sy,ℓ
j|j+1,i

σ2
m|m+1

)
,

We perform the optimization using SGD.

Crucially, we normalize the gradients to ensure the stability of the

training procedure.

In practice, we only perform 2 or 3 SGD steps.

57 / 63

Tamed ULA steps

We now turn to the Langevin steps on p̂y,ℓkℓ+1
.

As the marginals (pk)
n
k=0 approximate the true marginals of the forward

process initialized at the data distribution π, we may use

sθk(xk) = −(xk −
√
αkx̂

θ
0|k(xk))

/
(1− αk) ,

as a substitute for ∇xk
log pk(xk), following Dhariwal and Nichol (2021).

We sample approximately from p̂y,ℓkℓ+1
by running M steps of the Tamed

Unadjusted Langevin scheme (Brosse et al., 2019)

Xj+1 = Xj + γGy,ℓ
γ (Xj) +

√
2γZj , X0 = Xy

kℓ+1
, (1)

where

Gy,ℓ
γ (x) :=

∇ log β̂y,ℓ
kℓ|kℓ+1

(x) + sθkℓ+1
(x)

1 + γ∥∇ log β̂y,ℓ
kℓ|kℓ+1

(x) + sθkℓ+1
(x)∥

,

and set Xy,ℓ
kℓ+1

:= XM .

58 / 63

Summary

Given an approximate sample Xy
kℓ+1

from p̂ykℓ+1
,

Run TULA starting from Xy
kℓ+1

to obtain Xy,ℓ
kℓ+1

approximately

distributed according p̂y,ℓkℓ+1
.

Sample (Xy,ℓ
j)kℓ

j=kℓ+1
: given Xy,ℓ

j+1 with j ∈ Jkℓ, kℓ+1 − 1K,

Find variational approximation ry,ℓj|j+1(·|X
y,ℓ
j+1).

Draw Xy,ℓ
j ∼ ry,ℓj|j+1(·|X

y,ℓ
j+1).

Repeat these steps.

59 / 63

Toy experiments

Same 25 Gaussian mixture example.

DCPSM refers to our algorithm with M Langevin steps at the

beginning of each block.

We use L = 4.

We also estimate the empirical weights of each Gaussian mixture

mode and compare with the ground truth.

dx = 10, dy = 1 dx = 100, dy = 1

SW ∆w SW ∆w

MCGDiff 2.25/2.69± 2.07 0.32± 0.20 2.72/3.13± 1.76 0.42± 0.19

DPS 3.12/5.64± 8.45 0.20± 0.12 4.29/4.93± 4.85 0.35± 0.25

DDRM 2.66/3.06± 1.90 0.36± 0.16 5.97/6.26± 2.33 0.52± 0.19

DCPS50 1.95/2.70± 2.28 0.17± 0.25 4.40/4.72± 2.18 0.44± 0.16

DCPS500 1.26/2.59± 2.83 0.13± 0.30 2.81/3.22± 2.21 0.32± 0.18

Table 1: Results for the Gaussian mixture experiment. Results for the SW

distance are shown in median/mean ± standard deviation format.

60 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Super-resolution experiments

Original image Obervation y

DCPS

DPS

DDRM

61 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Inpainting and outpainting experiments

Original image Obervation y

DCPS

DPS

DDRM

62 / 63

Colorization experiments

Original image Obervation y

DCPS

DPS

DDRM

63 / 63

Colorization experiments

Original image Obervation y

DCPS

DPS

DDRM

63 / 63

Colorization experiments

Original image Obervation y

DCPS

DPS

DDRM

63 / 63

Colorization experiments

Original image Obervation y

DCPS

DPS

DDRM

63 / 63

Colorization experiments

Original image Obervation y

DCPS

DPS

DDRM

63 / 63

Thank you!

63 / 63

Bibliography i

References

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning

algorithm for boltzmann machines. Cognitive science, 9(1):147–169.

Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A., and

Akyildiz, O. D. (2023). Tweedie moment projected diffusions for

inverse problems. arXiv preprint arXiv:2310.06721.

Brosse, N., Durmus, A., Moulines, É., and Sabanis, S. (2019). The

tamed unadjusted langevin algorithm. Stochastic Processes and their

Applications, 129(10):3638–3663.

Cappe, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden

Markov Models (Springer Series in Statistics). Springer-Verlag, Berlin,

Heidelberg.

Bibliography ii

Cérou, F., Del Moral, P., Furon, T., and Guyader, A. (2012). Sequential

Monte Carlo for rare event estimation. Statistics and computing,

22(3):795–808.

Chopin, N., Papaspiliopoulos, O., et al. (2020). An introduction to

sequential Monte Carlo, volume 4. Springer.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023).

Diffusion posterior sampling for general noisy inverse problems. In The

Eleventh International Conference on Learning Representations.

Del Moral, P. (2004). Feynman-kac formulae. In Feynman-Kac Formulae,

pages 47–93. Springer.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image

synthesis. Advances in neural information processing systems,

34:8780–8794.

Bibliography iii

Dockhorn, T., Vahdat, A., and Kreis, K. (2022). Score-based generative

modeling with critically-damped langevin diffusion. In International

Conference on Learning Representations (ICLR).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial

nets. In Advances in neural information processing systems, pages

2672–2680.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel

approach to nonlinear/ non-Gaussian Bayesian state estimation. IEE

Proceedings-F, 140(2):107–113.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems,

33:6840–6851.

Bibliography iv

Kawar, B., Elad, M., Ermon, S., and Song, J. (2022). Denoising diffusion

restoration models. Advances in Neural Information Processing

Systems, 35:23593–23606.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and

Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion

probabilistic models. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 11461–11471.

Rezende, D. and Mohamed, S. (2015). Variational inference with

normalizing flows. In International conference on machine learning,

pages 1530–1538. PMLR.

Bibliography v

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S.

(2015). Deep unsupervised learning using nonequilibrium

thermodynamics. In International conference on machine learning,

pages 2256–2265. PMLR.

Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit

models. In International Conference on Learning Representations.

Song, J., Vahdat, A., Mardani, M., and Kautz, J. (2023).

Pseudoinverse-guided diffusion models for inverse problems. In

International Conference on Learning Representations.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and

Poole, B. (2021b). Score-based generative modeling through

stochastic differential equations. In International Conference on

Learning Representations.

Bibliography vi

Trippe, B. L., Yim, J., Tischer, D., Baker, D., Broderick, T., Barzilay, R.,

and Jaakkola, T. S. (2023). Diffusion probabilistic modeling of protein

backbones in 3d for the motif-scaffolding problem. In The Eleventh

International Conference on Learning Representations.

Wu, L., Trippe, B. L., Naesseth, C. A., Cunningham, J. P., and Blei, D.

(2023). Practical and asymptotically exact conditional sampling in

diffusion models. In Thirty-seventh Conference on Neural Information

Processing Systems.

Zhang, G., Ji, J., Zhang, Y., Yu, M., Jaakkola, T., and Chang, S. (2023).

Towards coherent image inpainting using denoising diffusion implicit

models. arXiv preprint arXiv:2304.03322.

	Introduction
	Denoising diffusion models
	A continuous-time perspective
	Feyman-Kac representation
	Monte Carlo guided diffusion
	Divide-and-conquer posterior sampling
	References

